.

Wednesday, April 3, 2019

Transducers used in the Cardiac Ultrasound Machine.

Transducers employ in the cardiac echography Machine.Transducers utilise in the Cardiac echography Machine.Abstract sonography visualise depends on the ability of piezo galvanising crystals to generate sound when excited with change current and the reverse issuing of charge accumulation or current flow when oftentimes(prenominal) crystals atomic number 18 subjected to pressure from sound waves. The first known echography imaginativeness gondola was knowing by K. T. Dussik in Australia in 1937. However, despite its widespread espousal today, medical sonography did not develop as rapidly as X-ray resourcefulness. Despite the relatively slow start, medical ultrasonography mental imagery is very widely accepted today because thither is no ionising beam involved and consequently the act is relatively safe. echography equipment is also cheaper as comp atomic number 18d to X-ray vision, magnetic resonance imaging, MRI and early(a) techniques associated with nuclear med icine. The procedure involves minimal patient of discomfort and is very useful for examining the soft wanders or the developing foetus. A dramatic increase in the number of honest-to-god patients with chronic heart and valve disease has resulted in a prolific acquire for the ultrasound cardiac imaging machines which can satisfy the requirements associated with fast and personify effective measurement of cardiac anatomy or function. One of the particular elements in the medical ultrasound imaging system is the ultrasound transducer with step up which signize bear upon and visualisation of the soft wander images is impossible. Although many rude(a)ly occurring substances such as quartz exhibit the piezoelectric effect, put across zirconate titanate (PZT) ceramic ferroelectric squargons nourish for many years been used for biomedical applications because of their superior characteristics for soft waver imaging. Polyvinylidene difluoride (PVDF), transducer existent ha s demonstrated advantages as a higher(prenominal) oftenness receiver. angiotensin converting enzyme or multilayer transducers made of these elements can be used for ultrasound imaging as single transducers operating in A-mode or a cardinal or three dimensional transducer array for B-mode, C-mode or M-mode ultrasound imaging. This truncated essay takes a look at transducers for medical ultrasound.The principle of process of a cardiac ultrasound imaging device is based on the information that is stick outd by the varying delay times of echoes that be reflected from sundry(a) depths of the human frame wind as a result of the ultrasound quivers that be generated by an ultrasound transducer beingness incident on the body wind. Delay times of echoes from different depths are different and ultrasound is reflected from the port of different cases of tissues. A Doppler shift in oftenness is also generated as a result of moving objects and the attenuation of ultrasound waves de pends on the type of tissue that the ultrasound wave is travelling through. The ultrasound transducer which is responsible for the extension and detection of reflected ultrasound is, therefore, an essential component of the ultrasound imaging device. echography transducers work on the basis of the piezoelectric effect in which an alternating potentiality employ to piezoelectric crystal material causes the crystals to bring galvanicly polarised as a result of the applied electric field and hence vibrate with the alternating voltage to produce sound. Such crystals also become electrically polarised when stress is applied to them and hence any sound waves which are incident on them result in charge accumulation on the crystal surface and hence the generation of an alternating voltage. Thus, an ultrasound transducer consists of a suitable piezoelectric material sandwiched between electrodes that are used to provide a fluctuate electric field when the transducer is postulate to gen erate ultrasound. When the transducer is required to detect ultrasound, the electrodes may be used to detect any fluctuating voltages produced as a result of the polarisation of the crystals of the piezoelectric material in chemical answerion to incident sound which generates fluctuating mechanic stresses on the material. piezoelectric materials include quartz, ferroelectric crystals such as tourmaline and Rochelle salt as well as the group of materials known as the piezoelectric ceramics, which include guide titanate (PbTiO3) and put across zirconate (PbZrO3). These materials are also known as piezoelectric ceramics which are used in ultrasound transducers for biomedical applications.Polyvinylidene difluoride (PVDF) is another transducer material which has demonstrated advantages as a high frequency receiver. Piezoelectric ceramics are sold with the place name PXE by Philips Company and are solid solutions of lead titanate (PbTiO3), and lead zirconate (PbZrO3) which have been modified by additives which are a group of piezoelectric ceramics known as PZT. PXE materials are hard, chemically inert and unaffected by a humid environment.The crystals in a ferroelectric material of which PXE is made up of align themselves randomly in a number of directions. With such a random orientation of crystals, the material testamenting exhibit no piezoelectric effect. In order to have a piezoelectric material which is opened of being used for ultrasound transducers, the material has to be subjected to a tender electric field at high temperatures. This has the effect of permanently locking the crystals in the direction of the applied electric field and making the crystal piezoelectric in the direction of the electric field. Hence, a piezoelectric ceramic material may be converted into a piezoelectric material in any given direction by applying a intemperate electric field to the material in the given direction at an elevated temperature. This treatment, which is kno wn as poling, is the final stage in the prevarication of a PXE piezoelectric. Metal electrodes perpendicular to the poling axis are deposited on the material so that an alternating electric field may be applied to generate ultrasound or ultrasound vibrations may be comprehend by sensing the electric field across the piezoelectric material. The voltage across a piezoelectric ceramic PXE material is normally straightway proportional to the applied stress. The construction of a simple, single element piezoelectric transducer is as shown below.The Construction of a Single Element Piezoelectric Transducerechography imaging in the A-mode directs a narrow beam of ultrasound into the tissue being scanned and the echo which may be displayed on a cathode-ray tube screen provides a measure of the distance between reflecting surfaces in the body. In the B-scan mode, the echo signalize is brightness modulated which makes it possible for information link to tissue depth to be displayed on th e screen in a visually effective manner. An ultrasound transducer array operating in B-mode permits a picture of the tissues within a patients body to be displayed on a CRT device. M-mode ultrasound imaging presents tissue thrust by scanning an A or B line on a monitor as a function of time and movements in this line indicate movements in the tissues within the body. In C-mode ultrasound imaging a second transducer is used to detect echoes sent out by the first transducer, presenting a 2-D map of the ultrasound attenuation within tissues.Having discussed the principles of operation of a piezoelectric medical ultrasound transducer, it is now appropriate to consider the practical problems associated with the construction of such transducers. This is done below.The Design of Ultrasound TransducersA transducer which is constructed out of piezoelectric material forget have a natural frequency of resonance and it is appropriate that the transducer should be excited with alternating el ectric field which matches the natural resonant frequency of oscillation of the material. The ultrasound frequencies that are used in medical imaging applications range from 1 megacycle per second to 15 MHz and echocardiography is usually performed at frequencies of 2.5 MHz. Hence, transducers which are used for ultrasound imaging have to be tuned for different frequencies. For a transducer material in which ultrasound waves travel at the speed c, with a resonant frequency f, the thickness of the material is related by the formula f=c/2d. Hence, it is possible to tune various transducers constructed of the same material to different frequencies by adjusting the thickness of the material. The ultrasound transducer can be excited by a continuous wave, a shiverd wave, or a single voltage pulse depending on the requirements for observing a continuous image, echo ranging or other tissue measurements. The rear face of the piezoelectric crystal material is usually supported by a backing material which is tungsten blind drunk araldite, so that the vibrations in the piezoelectric material are rapidly damped aft(prenominal) the initial excitation. It is great to couple the piezoelectric transducer to the body of a patient so that the incident ultrasound energy can be efficaciously transmitted into the body tissue that is being scanned. In order to do this, co-ordinated layers of suitable acoustic material are used along with a gel which makes it possible for the ultrasound waves to penetrate the tissue more efficiently. As far as possible, the characteristic acoustic impedance of the tissue being scanned is matched with the acoustic impedance of the transducer. The characteristic acoustic impedance of the tissue is defined asIn the formula, c is the speed of ultrasound in human tissue which is about 1540 m/sec with a regeneration of +/- 6% and is the tissue density. K is the bulk elastic modulus of the tissue being scanned.The acoustic parameters of an ultrasoun d transducer include its nominal frequency, the peak frequency which is the highest frequency response measured from the frequency spectrum, the bandwidth of the transducer which is the difference between the highest and the lowest 6 dB level in the frequency spectrum, the pulse width response time of the transducer, which is the time duration of the time domain envelope which is 20 dB above the rising and decaying cycles of a transducer response, the loop sensitivity for a medium on which a test is performed which is characterised byHere, Vo is the excitation pulse voltage in volts, while Vx is the original signal voltage from the transducer. The signal to disruption ratio for a biomedical ultrasound transducer is also an authorised parameter for an ultrasound transducer and this is defined asIn the above expression, Vx is the received signal voltage from the transducer in volts in response to a contract tone burst or pulse and Vn is the fraudulent scheme floor in volts. The signal to noise ratio for an ultrasound transducer is a measure of the noise associated with the transducer, measuring instrument or cables and this is a good measure of how polished a transducer is. In addition to the previously mentioned parameters, geometrical parameters for a transducer delimit how the acoustic pressure generated by a transducer varies across the axial and cross-section(a) palm of a transducer. These variations are illustrated belowAxial Beam pen for an Ultrasound TransducerCross Sectional Beam Profile for an Ultrasound Transducerhe detailed construction of an ultrasound transducer for medical applications involving the shaping of the piezoelectric material, co-ordinated layers, ho using and backing materials etc is presently conducted using computational techniques such as Finite Element Modelling of ultrasound transducers through the use of package packages such as Ultrasim and other commercially available software. In the overall formula, efforts have to be made to ensure that the overall design go out be optimised so as to deliver a sufficiently high power of ultrasound into the tissue being imaged and as far as possible there is best possible sound impedance matching between the transducer and the scanned tissue. Design of the backing material in an ultrasound transducer is important because this design determines the ring down time of the transducer, which is critical for low noise and optimal axial resolution of the transducer.Trends in Transducer Design for EchocardiographyOnly the simplest equipment for echocardiography will use a single ultrasound transducer and there is a manner towards design of echocardiography equipment which uses two or even three dimensional arrays of ultrasound transducers to provide superior quality 2 D or three-D computer generated pictures of the organ being imaged. Even the relatively simpler equipment being used these days has two or more ultrasound transducers fitted into the transducer pro be. The array of transducers are adapted of generating a shaped beam of ultrasound which can be appropriately focused using electronic digital signal processing techniques to provide better images and resolution. Although the relatively simple medical ultrasound scanners represent about 1000 per piece, reasonably decent transducer assemblies for a decent Philips or Toshiba ultrasound machines can cost 1500 for the transducer alone. Transducer arrays for two or three dimensional ultrasound imaging equipment can be much more dearly-won because of the large number of transducers that are employed in such imaging equipment.For better quality ultrasonic imaging to be possible, there is a requirement for enhanced bandwidth transducers, higher frequency transducer arrays and sophisticated digital signal processing circuits. There is also a trend towards transducer miniaturisation which will make intracavitary, intraurethral, or intravascular ultrasound (IVUS) investigation possible. The current imaging frequency range of 1 MHz to 15 MHz is expected to be increased to 20 MHz to 100 MHz and at these frequencies, microsonography devices using miniature ultrasound transducers with higher sensitivities are expected to provide much better and higher resolution images using catheter based transducers which are less(prenominal) then 2mm in diameter and are capable of being placed in veins. new(a) ultrasound transducer materials are credibly to provide transducers which are far more sensitive then those available presently and hire lower power. These transducers can be operated from battery powered portable equipment and there are indications in literature that with the availability of such devices, it is likely that the stethoscope will be replaced by miniature ultrasound equipment. New trends in ultrasound transducer construction are also moving towards composite transducer construction in which a composite of two piezoelectric materials is used to design the transdu cer.Ultrasound transducers are fairly rugged and the piezoelectric material does not well-off its properties unless exposed to high temperatures approaching the Curie temperature for the material are reached or there are strong alternating or direct electrical fields opposing the direction of poling for the material. Mechanical stresses imposed on the piezoelectric materials should not exceed the specified limits and although the specified limits vary for different types of materials, mechanical stress in excess of 2.5 MPa may be considered as likely to cause permanent damage. Ultrasound transducers are capable of being designed to operate in liquid mediums and the piezoelectric material does not react with water or gel.ConclusionMaterials with piezoelectric properties such as lead titanate (PbTiO3) and lead zirconate (PbZrO3) lend themselves to being treated by poling to generate as well as detect ultrasound waves when subjected to alternating electric fields or mechanical stresse s. Ultrasound transducers can be made out of these materials and these transducers can be designed for specified resonance frequencies for use in medical imaging. The detailed design of such transducers is an exciting and involving undertaking which is capable of being assisted by finite element simulations. Advances in transducer design involving the use of new materials, miniaturisation and the use of arrays of transducers promises to revolutionise medical imaging in the future by providing high resolution 3-D ultrasound images and the field is full of promise for device designers as well as computer engineers of the future.References/ BibliographyWeb SourcesAbboud, Najib N et al. Finite Element Modelling for supersonic Transducers. Weidlinger Associates Inc. SPIE Int. Symp. aesculapian imagination 1998, San Diego, Feb 21-27, 1998. swaggering 4, 2005. http//www.wai.com/AppliedScience/Software/Pzflex/Papers/pzflex-spie_mi98.pdfBinder, T. Three-Dimensional Echocardiography Princ iples and Promises. daybook of clinical and Basic Cardiology 2002 5 (Issue 2), 149-152. lordly 4, 2005. http//www.kup.at/kup/pdf/1137.pdfBrandt, Einar. Segmentation Techniques for Echocardiographic Image Sequences. University of Linkopings. 1998. noble 4, 2005. http//www.imv.liu.se/klinfys/einar/publications/pdf_open/Ex1934.pdfBridal, Lori S et al. Milestones on the Road to high schooler Resolution, Quantitative, and Functional ultrasonic mental imagery. PROCEEDINGS OF THE IEEE, VOL. 91, NO. 10, OCTOBER 2003. portentous 6, 2005. http//dei-s1.dei.uminho.pt/outraslic/lebiom/ultra/ultrasonic01232192.pdfDiederichs, Rolf. Ultrasound Transducer Library. Diederichs, Rolf. March, 1998. high-minded 4, 2005. http//www.ndt.net/wshop/wshop_tr/trans_li.htmEberhard, Brunner. Ultrasound scheme Considerations and their Impact on Front-End Components, Analog Devices, Inc., 2002. overbearing 4, 2005. http//www.analog.com/ program subroutine library/analogDialogue/ inscriptions/36-03/ultras ound/UltrasoundFrontend.pdfErikson, Kenneth R et al. Ultrasound in Medicine A Review. IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, VOL. SU-21, NO. 3, JULY 1971. August 4, 2005. http//www.ieee-uffc.org/ultrasonics/teaching/t7430144.pdfFink, Mathias. duration Reversed Acoustics. Scientific American Inc, 1999. August 4, 2005. http//www4.ncsu.edu/fouque/fink.pdfG. Fleury, R. Berriet, O. Le Baron, B. Huguenin. New piezocomposite transducers for remedy ultrasound. 2nd International Symposium on Therapeutic Ultrasound Seattle 31/07 02/08/02. August 4, 2005. http//www.imasonic.com/Papers/ISTU2Ima.pdfGenadiy V. Leonov,, Vladimir N. Khmelev, Roman V. Barsukov, Sergey N. Tsyganok, Alexey N. Slivin, Andrey V. Shalunov. Advancement of ultrasonic Technologies Efficiency, Development of inaudible Devices for the Manufactures, medical examination Institutions and the Agriculture Requirements. Biysk Technological add. 2004. August 4, 2005. http//www.bti.secna.ru/institute_/laboratory/us/do wnloads/vestnic_e.pdfGoel, Malti. Electret sensors, filters and MEMS devices New challenges in materials research. Current Science. Volume 85. No. 4. August 25, 2004. August 4, 2005. http//www.ias.ac.in/currsci/aug252003/443.pdfHazas, Mike and Andy Ward. A Novel Broadband Ultrasonic Location System. University of Cambridge, United Kingdom. 2002. August 4, 2005. http//www.comp.lancs.ac.uk/hazas/Hazas02_ANovelBULS.pdfHolm, Sverre. Ultrasim A Toolbox for Ultrasound Field theoretical account. University of Oslo. 2000. August 6, 2005. http//heim.ifi.uio.no/sverre/papers/01_Matlab.pdfKrochak, Paul and Stefan Story. Acoustic Densification of Multiphase float. University of British Columbia. June 19, 2005. August 4, 2005. http//www.math.ubc.ca/FluidLab/ quite a little/sstorey/Densificatio_Final_Report.pdfLadabaum, Igal et al. Surface Micro machined Capacitive Ultrasonic Transducer. ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 3, may 1998. August 4 , 2005. http//piezo.stanford.edu/library/papers/IL1998.pdfLewin, Peter A. diagnostic Ultrasound A Glimpse into the adjacent Decade. Drexel University. 2004. August 4, 2005. http//www.wma.net/e/publications/pdf/2000/lewin.pdfM. Greenstein, P. Lum, H. Yoshida, M.S. Seyed-Bolorforosh. A 2.5 MHz 2D crop with Z-Axis Electrically Conductive Backing. 2004. August 4, 2005. http//www.hpl.hp.com/techreports/96/HPL-96-89.pdfMeasurement Specialties Inc. Piezo pip Sensors Technical Manual. Measurement Specialties Inc. April 2, 1999. August 4, 2005. http//www.media.mit.edu/resenv/classes/MAS836/Readings/MSI-techman.pdfMichael Greenstein. Multilayer Piezoelectric Transducers for medical Ultrasound Transducers. Hewlett Packard Laboratories. 2000. August 4, 2005. http//www.hpl.hp.com/techreports/95/HPL-95-79.psMorgan Electro Ceramics. Introduction Piezoelectric Ceramics. Morgan Electro Ceramics. May 16, 2001. August 4, 2005. http//www.morganelectroceramics.nl/pdfs/tech.pdf northeastward Dakota State University. Imaging Systems. North Dakota State University. 2004. August 4, 2005. http//venus.ece.ndsu.nodak.edu/schroeder/Imaging%20Systems.docNottingham University. health check Ultrasound. Nottingham University. 2004. August 4, 2005. http//www.nottingham.ac.uk/physics/ugrad/courses/mod_home/f31ab1/notes/us.docPetersen R.B. and J. Hutchins. The iE33 intelligent echocardiography system. Philips Ultrasound checkup Systems. 2004. August 4, 2005. http//www.medical.philips.com/main/news/assets/docs/medicamundi/mm_vol48_no3/11_Peterson.pdfPicture IQ.com. Ultrasound Equipment. Picture IQ.com. 2005. August 6, 2005. http//www.pictureiq.com/piq/ph30-63999-Ultrasound.mspxPowis, Raymond. L and G. Wayne Moore. The Silent Revolution Catching up with the Contemporary compound Transducer. JDMS 20395405 November/December 2004. August 4, 2005. http//www.medphysics.wisc.edu/mp666/powis_moore_contemp_trans.pdfRainer Stotzka, Helmut Widmann, Tim Muller, Klaus Schlote Holubek, Hartmut Gemmeke, Nicole Ruiter, Georg Gobel. Prototype of a new 3D ultrasound computer tomography system transducer design and data enter. Forschungszentrum Karlsruhe. 2004. August 4, 2005. http//www.stotzka.de/Publications/stotzka2004.1.pdfRATSIMANDRESY, Leong, P.Mauchamp, D. Dinet, N. Felix, R. Dufait. A 3 MHz, Two Dimensional Array base on Piezocomposite for medical Imaging. IEEE Ultrasonics Symposium Proceedings. 2002. August 4, 2005. http//www.vermon.com/Biblio_Vermon/IEEE_3MHz%202D%20Array.pdfRitter, Timothy et al. Single vitreous silica PZN/PT-Polymer Composites for Ultrasound Transducer Applications. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, no. 4, July 2000. August 4, 2005. http//www.ieee-uffc.org/archive/public/opapers/jul792.pdfRonald E McKeighen. Design Guidelines for checkup Ultrasonic Arrays. Acoustic Imaging Transducers Inc. 2000. August 4, 2005. http//www.wai.com/AppliedScience/Software/Pzflex/Papers-other/spie-man.pdfSaleh K. Y. and N.B. Smith. Two-dimensional ultrasound phased array design for tissue ablation for treatment of benign prostatic hyperplasia. Pennsylvania State University. May, 2003. August 4, 2005. http//www.bioe.psu.edu/ultrasound/Research/Saleh%20Smith%20IJH04.pdfSchmidt, M. Ultrasonic Signal Processing Chip For Intraluminal Catheter ground Systems. Fraunhofer Institute of Microelectronic Circuits and Systems. 2004. August 4, 2005. http//www.imec.be/esscirc/papers-96/143.pdfShindler, Daniel M. Hand-held Ultrasound and the Stethoscope. Robert Wood Johnson medical examination School. 2004. August 4, 2005. http//www.bbriefings.com/pdf/950/shindler.pdfUltran. aesculapian Ultrasonic Transducers. Ultran. 2004. August 4, 2005. http//www.ultrangroup.com/pdfs/ultran_trans_cat.pdfUniversity of Central London. An Overview of Existing Medical Imaging Techniques. University of Central London. 2004. August 4, 2005. http//www.medphys.ucl.ac.uk/research/borl/homepages/florian/thesis/pdf_files/p35_44.pdfUniversit y of Lancaster. Medical Ultrasound Imaging. University of Lancaster. 2004. August 4, 2005. http//www.lancs.ac.uk/depts/physics/teaching/py336/Ultrasound.docWang, Haifeng, Tim Ritter, Wenwu Cao, and K. Kirk Shung. Passive Materials for High oftenness Ultrasound Transducers. The Society of Photo optical instrumentality Engineers, SPIE. 1999. August 6, 2005. http//www.bioe.psu.edu/labs/NIH/pass_mat.pdfWeigang, Beate, G. Wayne Moore, M.A., pile Gessert, William H. Phillips, Mark Schafer. The Methods and effectuate of Transducer Degradation on Image Quality and the Clinical Efficacy of Diagnostic Sonography. Sonic Technology Laboratories. 2004. August 4, 2005. http//www.4sonora.com/products/Transducer%20Degradation%20on%20Image.pdfWells, P.N.T. Ultrasonic Imaging of the Human Body. Bristol General Hospital. 1999. August 4, 2005. http//www.hrcc.on.ca/Research/bios/people/pattersonfiles/Wells%20paper.pdfWhitehouse, Kamin. Fred Jiang, Chris Karlof, Alec Woo, David Culler. Sensor Field L ocalisation A Deployment and Emperical Analysis. University of California, Berkley. April 9, 2004. August 4, 2005. http//www.cs.berkeley.edu/kamin/pubs/whitehouse04ultrasoundUCBtechReport.pdfReferences Related to Ultrasound Transducers from British Libraries. Medical Imaging 1999 Ultrasonic Transducer engineering science 24-25 February 1999, San Diego, California. Bellingham, Washington SPIE, 1999.. Medical Ultrasound Mirror Transducer Systems for High Resolution Imaging. 1984.American Association of Physicists in Medicine. Medical Physics of CT and Ultrasound tissue paper Imaging and Characterization Summer School Papers and Discussions.American Institute of Ultrasound in Medicine. Ultrasound Practice Committee Report for cleanup spot and Preparing Endocavitary Ultrasound Transducers Between Patients. Laurel, Md. American Institute of Ultrasound in Medicine, 1995.American Society of Ultrasound Technical Specialists and Society of Diagnostic Medical Sonographers. Medical Ultrasoun d. New York Wiley.Barnett, S. B., G. Kossoff, and World Federation for Ultrasound in Medicine and Biology. prophylactic and Standardisation in Medical Ultrasound Issues and Recommendations Regarding Thermal Mechanisms for Biological Effects of Ultrasound Symposium Papers. Pergamon Press, 1992.British Medical Ultrasound Society. BMUS Bulletin. London British Medical Ultrasound Society, 2003.Davies, Christopher Mark. The Construction and Design Characteristics of Bimorph Shear Wave Transducers. 1993.Fleming, David G., et al. Indwelling and Implantable insistence Transducers Based on Workshop Held in Cleveland, Ohio on December 4 and 5, 1975, Sponsored by the Biotechnology Resources Branch (RR-00857) and the National Institute of General Medical Sciences (GM-14267) of the National Institutes of Health. Cleveland CRC Press, 1976.Great Britain. Medical Devices Agency. A Comparative Technical military rank of Eleven Ultrasound Scanners for Examination of the Breast. Medical Devices Agen cy, 2001.Kuhn, A., P. A. Payne, and Dias. Design and Construction of Ultrasound Equipment for Characterization of Elastic Mechanic Properties of Dental Restorative Materials. Manchester UMIST, 1991.Luukkala, Mauri. Second concordant Generation of Ultrasound in Quartz Transducers. Turku, 1967.Mok, W. H., M. S. Beck, and Dias. Flow Imaging exploitation Pulsed Ultrasound Transducers. Manchester UMIST, 1986.Nakano, Hitoo, et al. XX International Congress The Fetus As a Patient and 6th Ian Donald Inter-University of Medical Ultrasound. 2004.Nicoll, J. J. and University of Edinburgh. Medical Ultrasound Mirror Transducer Systems for High Resolution Imaging. University of Edinburgh, 1984.Preston, R. C., et al. The Performance of the NPL Ultrasound Beam Calibrator Part 1 physiotherapy Transducers. Teddington National Physical Laboratory, 1986.Ruttenberg, Robert and Simon Peck. Transducer Development for Medical Dynamic Measurements. 2000.Shung, K. Kirk and Society of Photo-optical Instrum entation Engineers. Medical Imaging 1998 Ultrasonic Transducer Engineering 25-26 February 1998, San Diego, California. Bellingham, Washington SPIE, 1998.Society of Diagnostic Medical Sonographers. JDMS Journal of Diagnostic Medical Sonography. Philadelphia Lippincott for the Society of Diagnostic Medical Sonographers.Society of Ultrasound in Medicine of the Republic of China. Journal of Medical Ultrasound. Taipei.Turnbull, Daniel H. and University of Toronto Department of Medical Biophysics. Two-Dimensional Transducer Arrays fo

No comments:

Post a Comment